Gaussian Process Surrogate Models for the CMA Evolution Strategy

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing SVM, Gaussian Process and Random Forest Surrogate Models for the CMA-ES

1 National Institute of Mental Health Topolová 748, 250 67 Klecany, Czech Republic [email protected] 2 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague Břehová 7, 115 19 Prague 1, Czech Republic 3 Institute of Computer Science, Academy of Sciences of the Czech Republic Pod Vodárenskou věží 2, 182 07 Prague 8, Czech Republic {bajer,holena}@cs.cas.cz 4 Fa...

متن کامل

Adaptive Generation-Based Evolution Control for Gaussian Process Surrogate Models

Added credits to the s∗ACM-ES algorithm. Section 1 Added references and clarified the motivation. Section 3 Added references. Abstract: The interest in accelerating black-box optimizers has resulted in several surrogate model-assisted version of the Covariance Matrix Adaptation Evolution Strategy, a state-of-the-art continuous black-box optimizer. The version called Surrogate CMA-ES uses Gaussi...

متن کامل

THE CMA EVOLUTION STRATEGY BASED SIZE OPTIMIZATION OF TRUSS STRUCTURES

Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimizatio...

متن کامل

Surrogate Constraint Functions for CMA Evolution Strategies

Many practical optimization problems are constrained black boxes. Covariance Matrix Adaptation Evolution Strategies (CMA-ES) belong to the most successful black box optimization methods. Up to now no sophisticated constraint handling method for Covariance Matrix Adaptation optimizers has been proposed. In our novel approach we learn a meta-model of the constraint function and use this surrogate...

متن کامل

The CMA Evolution Strategy: A Tutorial

3 Adapting the Covariance Matrix 10 3.1 Estimating the Covariance Matrix From Scratch . . . . . . . . . . . . . . . . 10 3.2 Rank-μ-Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Rank-One-Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.1 A Different Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.2 Cumulation: Uti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Evolutionary Computation

سال: 2019

ISSN: 1063-6560,1530-9304

DOI: 10.1162/evco_a_00244